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Abstract

Background: Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in 
biomedical and bioinformatics applications. However, conclusions are often reached through inconsist­
ent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we de­
veloped pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and 
comparing ROC curves in a user-friendly, object-oriented and flexible interface.
Results: With data previously imported into the R or S+ environment, the pROC package builds ROC 
curves and includes functions for computing confidence intervals, statistical tests for comparing total  
or partial area under the curve or the operating points of different classifiers, and methods for smooth­
ing ROC curves.  Intermediary and final results are visualised in user-friendly interfaces. A case study 
based on published clinical and biomarker data shows how to perform a typical ROC analysis with 
pROC.
Conclusions: pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes mul ­
tiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing 
proper ROC interpretation. pROC is available in two versions: in the R programming language or with 
a graphical user interface in the S+ statistical software. It is accessible at expasy.org/tools/pROC/ un­
der the GNU General Public License. It is also distributed through the CRAN and CSAN public reposit ­
ories, facilitating its installation.
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Background
A ROC plot displays the performance of a binary classification method with continuous or discrete 

ordinal output. It shows the sensitivity (the proportion of correctly classified positive observations) and 
specificity (the proportion of correctly classified negative observations) as the output threshold is moved 
over the range of all possible values. ROC curves do not depend on class probabilities, facilitating their 
interpretation and comparison across different data sets. Originally invented for the detection of radar 
signals, they were soon applied to psychology  (Swets 1973) and medical fields such as radiology  (Pepe 
2003). They are now commonly used in medical decision making, bioinformatics (Sonego et al. 2008), 
data mining and machine learning, evaluating biomarker performances or comparing scoring methods 
(Fawcett 2006; Pepe 2003).
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In the ROC context, the area under the curve (AUC) measures the performance of a classifier and is 
frequently  applied  for  method  comparison.  A  higher  AUC  means  a  better  classification.  However,  
comparison between AUCs is often performed without a proper statistical analysis partially due to the 
lack of relevant, accessible and easy-to-use tools providing such tests. Small differences in AUCs can be 
significant  if  ROC  curves  are  strongly  correlated,  and  without  statistical  testing  two  AUCs  can  be 
incorrectly labelled as similar. In contrast a larger difference can be non significant in small samples, as 
shown by Hanczar  et al. (Hanczar et al.), who also provide an analytical expression for the variance of 
AUC’s as a function of the sample size. We recently identified this lack of proper statistical comparison  
as a potential cause for the poor acceptance of biomarkers as diagnostic tools in medical applications 
(Robin et al. 2009). Evaluating  a classifier by means of total AUC is not suitable when the performance 
assessment only takes place in high specificity or high sensitivity regions (Robin et al. 2009). To account 
for these cases, the partial AUC (pAUC) was introduced as a local comparative approach that focuses 
only on a portion of the ROC curve (Jiang et al. 1996; McClish 1989; Streiner & Cairney 2007). 

Software for ROC analysis already exists. A previous review (Stephan et al. 2003) compared eight ROC 
programs and found that there is a need for a tool performing valid and standardized statistical tests  
with good data import and plot functions.

The R (R Development Core Team 2010) and S+ (TIBCO Spotfire S+ 8.2, 2010, Palo Alto, CA) statistical 
environments  provide  an extensible  framework  upon which software  can  be  built.  No  ROC tool  is  
implemented in S+ yet while four R packages computing ROC curves are available:

1. ROCR (Sing et al. 2005) provides tools computing the performance of predictions by means of 
precision/recall  plots,  lift  charts,  cost  curves  as  well  as  ROC  plots  and  AUCs.  Confidence 
intervals (CI) are supported for ROC analysis but the user must supply the bootstrapped curves. 

2. The  verification package  (NCAR 2010) is not specifically aimed at ROC analysis; nonetheless it 
can plot ROC curves, compute the AUC and smooth a ROC curve with the binomial model. A 
Wilcoxon test for a single ROC curve is  also implemented, but no test comparing two ROC 
curves is included. 

3. Bioconductor includes the  ROC package  (Carey & Redestig 2008) which can only compute the 
AUC and plot the ROC curve. 

4. Pcvsuite  (Pepe et  al.  2009) is  an advanced package for  ROC curves which features advanced 
functions such as covariate adjustment and ROC regression. It was originally designed for Stata 
and ported to R. It is not available on the CRAN (comprehensive R archive network), but can be 
downloaded for Windows and MacOS from labs.fhcrc.org/pepe/dabs/rocbasic.html.
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Package name ROCR Verification ROC 
(Bioconductor)

pcvsuite pROC

Smoothing No Yes No Yes Yes
Partial AUC Only SP1 No Only SP1 Only SP SP and SE
Confidence 
intervals

Partial2 Partial3 No Partial4 Yes

Plotting 
Confidence
Intervals

Yes Yes No Yes Yes

Statistical tests No AUC (one sample) No AUC, pAUC,
SP

AUC, pAUC, 
SP, SE, ROC

Available on 
CRAN

Yes Yes No, 
bioconductor.org

No, 
labs.fhcrc.org/
pepe/dabs/

Yes

Table 1: Features of the R packages for ROC anaylsis.
1Partial AUC only between 100% and a specified cutoff of specificity
2Bootstrapped ROC curves must be computed by the user
3Only threshold averaging
4Only at a given specificity or inverse ROC

http://labs.fhcrc.org/pepe/dabs/rocbasic.html
http://labs.fhcrc.org/pepe/dabs/
http://labs.fhcrc.org/pepe/dabs/
http://www.bioconductor.org/
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Table  1 summarizes  the  differences  between these  packages.  Only  pcvsuite  enables  the  statistical 
comparison between two ROC curves. Pcvsuite, ROCR and ROC can compute AUC or pAUC, but the 
pAUC can only be defined as a portion of specificity.

The pROC package was designed in order to facilitate ROC curve analysis and apply proper statistical 
tests  for  their  comparison.  It  provides  a  consistent  and user-friendly  set  of  functions  building  and 
plotting a ROC curve, several methods smoothing the curve, computing the full or partial AUC over any 
range of specificity or sensitivity, as well as computing and visualizing various CIs. It includes tests for 
the statistical comparison of two ROC curves as well as their AUCs and pAUCs. The software comes 
with an extensive documentation and relies on the underlying R and S+ systems for data input and plots.  
Finally, a graphical user interface (GUI) was developed for S+ for users unfamiliar with programming.

Implementation

AUC and pAUC
In  pROC,  the  ROC curves  are  empirical  curves  in  the  sensitivity  and specificity  space.  AUCs are 

computed with trapezoids  (Fawcett 2006). The method is extended for pAUCs by ignoring trapezoids 
outside the partial range and adding partial trapezoids with linear interpolation when necessary. The 
pAUC  region  can  be  defined  either  as  a  portion  of  specificity,  as  originally  described  by  McClish 
(McClish 1989), or as a portion of sensitivity,  as proposed later by Jiang  et al. (Jiang et al.  1996). Any 
section of the curve pAUC(t0, t1) can be analyzed, and not only portions anchored at 100% specificity or 
100% sensitivity. Optionally, pAUC can be standardized with the formula by McClish (McClish 1989): 

1
2 ( 1+

pAUC−min
max−min ) Equation 1

where min is the pAUC over the same region of the diagonal ROC curve, and max is the pAUC over 
the same region of the perfect ROC curve. The result is a standardized pAUC which is always 1 for a  
perfect ROC curve and 0.5 for a non-discriminant ROC curve, whatever the partial region defined.

Comparison
Two ROC curves are “paired” (or sometimes termed “correlated” in the literature) if they derive from 

multiple measurements on the same sample. Several tests exist to compare paired (Bandos et al. 2005; 
Bandos et al. 2006; Braun & Alonzo 2008; DeLong et al. 1988; Hanley & McNeil 1983; Moise et al. 1988; 
Venkatraman & Begg 1996) or unpaired (Venkatraman 2000) ROC curves. The comparison can be based 
on AUC  (Bandos et al. 2005; Bandos et al. 2006; Braun & Alonzo 2008; DeLong et al. 1988; Hanley & 
McNeil 1983), ROC shape  (Moise et al. 1988; Venkatraman 2000; Venkatraman & Begg 1996), a given 
specificity  (Pepe et al. 2009) or confidence bands (Campbell 1994; Sonego et al. 2008). Several tests are 
implemented  in  pROC.  Three  of  them  are  implemented  without  modification  from  the  literature 
(DeLong et al. 1988; Venkatraman 2000; Venkatraman & Begg 1996), and the others are based on the 
bootstrap percentile method.

The bootstrap test to compare AUC or pAUC in pROC implements the method originally described by 
Hanley and McNeil (Hanley & McNeil 1983). They define Z as 

Z=
1−2

sd 1−2
Equation 2

where θ1 and θ2 are the two (partial) AUCs. Unlike Hanley and McNeil, we compute sd(θ1 - θ2,)  with N 
(defaults to 2000) bootstrap replicates. In each replicate r, the original measurements are resampled with 
replacement; both new ROC curves corresponding to this new sample are built, the resampled AUCs θ1,r 

and θ2,r and their difference Dr =  θ1,r -  θ2,r are computed. Finally, we compute sd(θ1 -  θ2,) = sd(D). As Z 
approximately follows a normal distribution, one or two-tailed p-values are calculated accordingly. This  
bootstrap test is very flexible and can be applied to AUC, pAUC and smoothed ROC curves.

Bootstrap is stratified by default; in this case the same number of case and control observations than  
in the original sample will  be selected in each bootstrap replicate.  Stratification can be disabled and 
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observations will be resampled regardless of their class labels. Repeats for the bootstrap and progress  
bars are handled by the plyr package (Wickham 2010).

The second method to compare AUCs implemented in pROC was developed by DeLong et al. (DeLong 
et  al.  1988) based  on  U-statistics  theory  and  asymptotic  normality.  As  this  test  does  not  require 
bootstrapping, it runs significantly faster, but it cannot handle pAUC or smoothed ROC curves. For both 
tests, since the variance depends on the covariance of the ROC curves (Equation 3), strongly correlated 
ROC curves can have similar AUC values and still be significantly different.

var 1−2=var1−2 cov 1 ,2 Equation 3

Venkatraman  and  Begg  (Venkatraman  &  Begg  1996) and  Venkatraman  (Venkatraman  2000) 
introduced tests to compare two actual ROC curves as opposed to their respective AUCs. Their method 
evaluates  the  integrated  absolute  difference  between  the  two  ROC  curves,  and  a  permutation 
distribution is generated to compute the statistical significance of this difference. As the measurements 
leading  to  the  two  ROC  curves  may  be  performed  on  different  scales,  they  are  not  generally 
exchangeable  between two samples.  Therefore,  the  permutations are  based on ranks,  and ranks are 
recomputed as described in (Venkatraman & Begg 1996) to break the ties generated by the permutation.

Finally  a  test  based on bootstrap  is  implemented  to  compare  the  ROC curve  at  a  given  level  of 
specificity or sensitivity as proposed by Pepe et al. (Pepe et al. 2009). It works similar to the (p)AUC test, 
but instead of computing the (p)AUC at each iteration, the sensitivity (or specificity) corresponding to 
the given specificity (or respectively sensitivity) is computed. This test is equivalent to a pAUC test with a  
very small pAUC range.

Confidence intervals
CIs are computed with Delong’s method (DeLong et al. 1988) for AUCs and with bootstrap for pAUCs 

(Carpenter  &  Bithell  2000).  The  CIs  of  the  thresholds  or  the  sensitivity  and  specificity  values  are 
computed with bootstrap resampling and the averaging methods described by Fawcett (Fawcett 2006). 
In  all  bootstrap  CIs,  patients  are  resampled and the  modified  curve  is  built  before  the  statistics  of 
interest is computed. As in the bootstrap comparison test, the resampling is done in a stratified manner 
by default.

Smoothing
Several methods to smooth a ROC curve are also implemented. Binormal smoothing relies on the 

assumption that there exists a monotone transformation to make both case and control values normally  
distributed (Pepe 2003). Under this condition a simple linear relationship (Equation 4) holds between the 
normal quantile  function (φ)  values of sensitivities  and specificities.  In our implementation, a linear 
regression between all quantile values defines a and b, which then define the smoothed curve.

−1 SE=ab−1SP Equation 4

This is  different from the method described by Metz et al.  (Metz et  al.  1998) who use  maximum 
likelihood estimation of a and b. Binormal smoothing was previously shown to be robust and to provide 
good fits in many situations even when the deviation from basic assumptions is quite strong  (Hanley 
1988). For continuous data we also include methods for kernel (density) smoothing (Zou et al. 1997), or to 
fit various known distributions to the class densities with fitdistr in the MASS package (Venables & Ripley 
2002). If a user would like to run a custom smoothing algorithm that is optimized for the analysed data,  
then pROC also accepts class densities or the customized smoothing function as input. CI and statistical  
tests of smoothed AUCs are done with bootstrap.

Results and Discussion
We first  evaluate  the accuracy of the ROC comparison tests.  Results  in Appendices show that all 

unpaired tests give uniform p-values under a null hypothesis (Appendix figure 1) and that there is a very 
good  correlation  between  DeLong’s  and  bootstrap  tests  (Appendix  figure  2).  The  relation  between 
Venkatraman’s and the other tests is also investigated (Appendix figure 3). 
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We now present how to perform a typical ROC analysis with  pROC. In a recent study  (Turck et al. 
2010), we analyzed the level of several biomarkers in the blood of patients at hospital admission after  
aneurysmal  subarachnoid  haemorrhage  (aSAH)  to  predict  the  6-month  outcome.  The  141  patients 
collected were classified according to their outcome with a standard neurological scale, the Glasgow 
outcome  scale  (GOS).  The  biomarker  performances  were  compared  with  the  well  established 
neurological  scale  of  the  World  Federation  of  Neurological  Surgeons  (WFNS),  also  obtained  at 
admission.  

Case study on clinical aSAH data
The purpose of the case presented here is to identify patients at risk of poor post-aSAH outcome, as 

they require specific healthcare management; therefore the clinical test must be highly specific. Detailed 
results of the study are reported in (Turck et al. 2010). We only outline the features relevant to the ROC 
analysis. 

ROC curves were generated in  pROC for five biomarkers (H-FABP, S100 , Troponin I,  NKDA andβ  
UFD-1) and three clinical factors (WFNS, Modified Fisher score and age). 

AUC and pAUC
Since we are interested in a clinical test with a high specificity, we focused on partial AUC between  

90% and 100% specificity. 
The best pAUC is obtained by WFNS, with 3.1%, closely followed by S100  with 3.0% (β Figure 1). A 

perfect clinical test within the same region corresponds to a pAUC of 10%, while a ROC curve without  
any discrimination power would yield only 0.5%. In the case of WFNS, we computed a standardized 
pAUC of 63.7% with McClish’s formula (Equation 1). Of these 63.9%, 50% are due to the small portion 
(0.5% non-standardized) of the ROC curve below the identity line, and the remaining 13.9% are made of 
the larger part (2.6% non-standardized) above the curve. In the R version of  pROC,  the standardized 
pAUC of WFNS can be computed with:

roc(response = aSAH$outcome, predictor = aSAH$wfns, partial.auc = c(100, 90), 
partial.auc.correct = TRUE, percent = TRUE)

In the rest of this paper, we report only not standardized pAUCs.

CI
Given the pAUC of WFNS, it makes sense to compute a 95% CI of the pAUC to assess the variability of  

the measure. In this case, we performed 10000 bootstrap replicates and obtained the 1.6-5.0% interval. In 
our experience, 10000 replicates give a fair estimate of the second significant digit. A lower number of  
replicates (for example 2000, the default) gives a good estimate of the first significant digit only. Other 
confidence intervals can be computed. The threshold with the point farthest to the diagonal line in the 
specified region was determined with pROC to be 4.5 with the coords function. A rectangular confidence 
interval can be computed and the bounds are 89.0-98.9 in specificity and 26.0-54.0 in sensitivity (Figure
1).  If  the  variability  of  sensitivity  at  90%  specificity  is  considered  more  relevant  than  at  a  specific  
threshold, the interval of sensitivity is computed as 32.8-68.8. As shown in Figure 1 for S100 , a CI shapeβ  
can be obtained by simply computing the CI’s of the sensitivities over several constantly spaced levels of  
specificity, and these CI bounds are then joined to generate the shape. The following R code calculates  
the confidence shape:

plot(x = roc(response = aSAH$outcome, predictor = aSAH$s100, percent=TRUE, 
ci=TRUE, of="se", sp=seq(0, 100, 5)), ci.type="shape")

The confidence intervals of a threshold or of a predefined level of sensitivity or specificity answer  
different questions. For instance, it would be wrong to compute the CI of the threshold 4.5 and report 
only  the  CI  bound  of  sensitivity  without  reporting  the  CI  bound  of  specificity  as  well.  Similarly,  
determining the sensitivity and specificity of the cut-off 4.5 and then computing both CIs separately  
would also be inaccurate.
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Statistical comparison
The second best pAUC is that of S100  with 3.0%. The difference to WFNS is very small and theβ  

bootstrap test of pROC indicates that it is not significant (p=0.8, Figure 1). Surprisingly, a Venkatraman’s 
test (over the total ROC curve) indicates a difference in the shape of the ROC curves (p=0.004), and 
indeed a test evaluating pAUCs in the high sensitivity region (90-100% sensitivity) would highlight a 
significant difference (p=0.005, pAUC=4.3 and 1.4 for WFNS and S100  respectively). However, since weβ  
are not interested in the high sensitivity region of the AUC there is no significant difference between 
WFNS and S100 . β

In  pROC pairwise comparison of ROC curves is implemented. Multiple testing is not accounted for  
and in the event of running several tests, the user is reminded that as with any statistical test, multiple  
tests should be performed with care, and if necessary appropriate corrections should be applied (Ewens 
& Grant 2005).

The bootstrap test can be performed with the following code in R:

roc.test(response = aSAH$outcome, predictor1 = aSAH$wfns, predictor2 = aSAH$s100, 
partial.auc = c(100, 90), percent = TRUE)

Smoothing
Whether or not to smooth a ROC curve is a difficult choice. It can be useful in ROC curves with only  

few points, in which the trapezoidal rule consistently underestimates the true AUC (DeLong et al. 1988). 
This is the case with most clinical scores, such as the WFNS shown in Figure 2 where three smoothing 
methods available in pROC are plotted: (i) normal distribution fitting, (ii) density and (iii) binormal. In 
our case study:

(i) The normal fitting (red) gives a significantly lower AUC estimate (  = -5.1, p = 0.0006, BootstrapΔ  
test).  This  difference is  due to the non-normality  of WFNS.  Distribution fitting  can be  very 
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Figure 1: ROC curves of WFNS and S100 .β  ROC curves of WFNS (blue) and S100  (green). The black bars are the confidence inβ ­
tervals of WFNS for the threshold 4.5 and the light green area is the confidence interval shape of S100 . The vertical light greyβ  
shape corresponds to the pAUC region. The pAUC of both empirical curves is printed in the middle of the plot, with the p-value 
of the difference computed by a bootstrap test on the right.
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powerful when there is a clear knowledge of the underlying distributions, but should be avoided 
in other contexts. 

(ii) The density (green) smoothing also produces a lower (  = -1.5, p=6*10Δ -7) AUC. It is interesting to 
note that even with a smaller difference in AUCs, the p-value can be more significant due to a  
higher covariance. 

(iii) The  binormal  smoothing  (blue)  gives  a  slightly  but  not  significantly  higher  AUC  than  the 
empirical ROC curve (  = +2.4, p=0.3). It is probably the best of the 3 smoothing estimates in thisΔ  
case (as mentioned earlier we were expecting a higher AUC as the empirical AUC of WFNS was 
underestimated).  For  comparison,  Appendix  figure  4 displays  both  our  implementation  of 
binormal smoothing with the one implemented in pcvsuite (Pepe et al. 2009).

Figure 3 shows how to create a plot with multiple smoothed curves with pROC in S+. One loads the 
pROC library within S+, selects the new ROC curve item in the Statistics menu, selects the data on which 
the analysis is to be performed, and then moves to the Smoothing tab to set parameters for smoothing.

Conclusion
In this case study we showed how pROC could be run for ROC analysis. The main conclusion drawn 

from this analysis is that none of the measured biomarkers can predict the patient outcome better than 
the neurological score (WFNS).
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Figure 2: ROC curve of WFNS and smoothing. Empirical ROC curve of WFNS is shown in grey with three smoothing methods: 
binormal (blue), density (green) and normal distribution fit (red). 
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Installation and usage

R
pROC can be installed in R by issuing the following command in the prompt:

install.packages("pROC")

Loading the package:

library(pROC)

Getting help:

?pROC

S+
pROC is available from the File menu, item Find Packages…. It can be loaded from the File menu, item 

Load Library….

8

Figure 3: Screenshot of pROC in S+ for smoothing WFNS ROC curve. Top left: the General tab, where data is entered. Top 
right: the details about smoothing. Bottom left: the details for the plot. Checking the box “Add to existing plot” allows drawing  
several curves on a plot. Bottom right: the result in the standard S+ plot device.
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In addition to the command line functions, a GUI is then available in the Statistics menu. It features 
one window for univariate ROC curves (which contains options for smoothing, pAUC, CIs and plotting)  
and two windows for paired and unpaired tests of two ROC curves. In addition a specific help file for the  
GUI is available from the same menu.

Functions and methods
A summary of the functions available to the user in the command line version of pROC is shown in  

Table 2. Table 3 shows the list of the methods provided for plotting and printing.

Conclusions
The pROC package is a powerful set of tools analyzing and comparing ROC curves in R and S+. Unlike 

existing packages such as ROCR or verification, it is solely dedicated to ROC analysis, but provides in our 
knowledge the most complete set of statistical tests and plots for ROC curves. As shown in the case  
study reported here,  pROC features the computation of AUC and pAUC, various kinds of confidence 
intervals, several smoothing methods, and the comparison of two paired or unpaired ROC curves. We 
believe  that  pROC should  provide  researchers,  especially  in  the  biomarker  community,  with  the 
necessary tools to better interpret their results in biomarker classification studies. 

pROC is available in two versions for R and S+. A thorough documentation with numerous examples is  
provided in the standard R format. For users unfamiliar with programming, a graphical user interface is  
provided for S+.

Availability and requirements
► Project name: pROC
► Project home page: expasy.org/tools/pROC
► Operating system(s): Platform independent
► Programming language: R and S+
► Other requirements: R ≥ 2.10.0 or S+ ≥ 8.1.1
► License: GNU GPL
► Any restrictions to use by non-academics: none

9

lines ROC curves (roc) and smoothed ROC curves (smooth.roc)
plot ROC curves (roc), smoothed ROC curves (smooth.roc) and confidence intervals (ci.se, ci.sp, 

ci.thresholds)
print All pROC objects (auc, ci.auc, ci.se, ci.sp, ci.thresholds, roc, smooth.roc)

Table 3: Methods provided by pROC for standard functions.

are.paired Determines if two ROC curves are possibly paired
auc Computes the area under the ROC curve
ci Computes the confidence interval of a ROC curve
ci.auc Computes the confidence interval of the AUC
ci.se Computes the confidence interval of sensitivities at given specificities
ci.sp Computes the confidence interval of specificities at given sensitivities
ci.thresholds Computes the confidence interval of thresholds
coords Returns the coordinates (sensitivities, specificities, thresholds) of a ROC curve
roc Builds a ROC curve
roc.test Compares the AUC of two correlated ROC curves

smooth Smoothes a ROC curve

Table 2: Functions provided in pROC.

http://expasy.org/tools/pROC


Robin et al. (2011) BMC Bioinformatics 12 p. 77

Authors' contributions
XR carried out the programming and software design and drafted the manuscript.  NTu,  AH, NTi 

provided data and biological knowledge, tested and critically reviewed the software and the manuscript. 
FL  helped  to  draft  and  to  critically  improve  the  manuscript.  JCS  conceived  the  biomarker  study, 
participated in its design and coordination, and helped to draft the manuscript. MM participated in the 
design and coordination of the bioinformatics part of the study, participated in the programming and 
software design and helped to draft the manuscript. All authors read and approved the final manuscript. 

Acknowledgements
The  authors  would  like  to  thank E.  S.  Venkatraman  and  Colin  B.  Begg  for  their  support  in  the 

implementation of their test.
This work was supported by Proteome Science Plc.

References
Bandos A. I., Rockette H. E. and Gur D. (2005). A permutation test sensitive to differences in areas for  

comparing  ROC  curves  from a  paired  design.  Statistics  in  Medicine 24  (18),  p.  2873–2893.  PMID: 
16134144. DOI: 10.1002/sim.2149.

Bandos A. I.,  Rockette H. E. and Gur D. (2006).  A Permutation Test for Comparing ROC Curves in  
Multireader Studies: A Multi-reader ROC, Permutation Test.  Academic Radiology 13 (4), p. 414–420. 
PMID: 16554220. DOI: 10.1016/j.acra.2005.12.012.

Braun T. M. and Alonzo T. A. (2008). A modified sign test for comparing paired ROC curves. Biostatistics 
9 (2), p. 364–372. PMID: 17925302. DOI: 10.1093/biostatistics/kxm036.

Campbell G. (1994). Advances in statistical methodology for the evaluation of diagnostic and laboratory 
tests. Statistics in Medicine 13, p. 499–508. PMID: 8023031.

Carey V. and Redestig H. (2008). ROC: utilities for ROC, with uarray focus, v. 1.24.0. www.bioconduc  -  
tor.org.

Carpenter J. and Bithell J. (2000). Bootstrap confidence intervals: when, which, what? A practical guide 
for  medical  statisticians.  Statistics  in Medicine 19 (9),  p.  1141–1164.  PMID:  10797513.  DOI:  10.1002/
(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F.

DeLong E. R., DeLong D. M. and Clarke-Pearson D. L. (1988). Comparing the Areas under Two or More 
Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach.  Biometrics 44 (3), 
p. 837–845. PMID: 3203132.

Ewens W. J.  and Grant G. R. (2005).  Statistics (i):  An Introduction to Statistical  Inference.  Statistical  
methods in bioinformatics. New York, Springer-Verlag.

Fawcett T. (2006). An introduction to ROC analysis.  Pattern Recognition Letters 27 (8), p. 861-874. DOI: 
10.1016/j.patrec.2005.10.010.

Hanczar  B.,  Hua  J.,  Sima  C.,  et  al. (2010).  Small-sample  precision  of  ROC-related  estimates. 
Bioinformatics 26 (6), p. 822–830. PMID: 20130029. DOI: 10.1093/bioinformatics/btq037.

Hanley  J.  A.  and  McNeil  B.  J.  (1983).  A  method  of  comparing  the  areas  under  receiver  operating  
characteristic curves derived from the same cases. Radiology 148 (3), p. 839–843.

Hanley J. A. (1988). The robustness of the "binormal" assumptions used in fitting ROC curves.  Medical  
Decision Making 8 (3), p. 197–203. PMID: 6878708.

Jiang Y., Metz C. E. and Nishikawa R. M. (1996). A receiver operating characteristic partial area index for 
highly sensitive diagnostic tests. Radiology 201 (3), p. 745–750. PMID: 8939225.

McClish D. K. (1989). Analyzing a Portion of the ROC Curve. Medical Decision Making 9 (3), p. 190–195. 
PMID: 2668680.

10

http://www.ncbi.nlm.nih.gov/pubmed/2668680
http://www.ncbi.nlm.nih.gov/pubmed/8939225
http://www.ncbi.nlm.nih.gov/pubmed/6878708
http://dx.doi.org/10.1093/bioinformatics/btq037
http://www.ncbi.nlm.nih.gov/pubmed/20130029
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://www.ncbi.nlm.nih.gov/pubmed/3203132
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9%3C1141::AID-SIM479%3E3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9%3C1141::AID-SIM479%3E3.0.CO;2-F
http://www.ncbi.nlm.nih.gov/pubmed/10797513
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.ncbi.nlm.nih.gov/pubmed/8023031
http://dx.doi.org/10.1093/biostatistics/kxm036
http://www.ncbi.nlm.nih.gov/pubmed/17925302
http://dx.doi.org/10.1016/j.acra.2005.12.012
http://www.ncbi.nlm.nih.gov/pubmed/16554220
http://dx.doi.org/10.1002/sim.2149
http://www.ncbi.nlm.nih.gov/pubmed/16134144


Robin et al. (2011) BMC Bioinformatics 12 p. 77

Metz C. E., Herman B. A. and Shen J.-H. (1998). Maximum likelihood estimation of receiver operating  
characteristic (ROC) curves from continuously-distributed data. Statistics in Medicine 17 (9), p. 1033–
1053. PMID: 9612889. DOI: 10.1002/(SICI)1097-0258(19980515)17:9<1033::AID-SIM784>3.0.CO;2-Z.

Moise A., Clement B. and Raissis M. (1988).  A test for crossing receiver operating characteristic  (roc)  
curves. Communications in Statistics - Theory and Methods 17 (6), p. 1985–2003.

NCAR (2010). verification: Forecast verification utilities v. 1.31. http://CRAN.R-project.org/package=veri  -  
fication.

Pepe  M.,  Longton  G.  and  Janes  H.  (2009).  Estimation  and  Comparison  of  Receiver  Operating  
Characteristic Curves. The Stata journal 9 (1), p. 1. PMID: 20161343.

Pepe M. S. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford, Oxford 
University Press.

R Development Core Team (2010).  R: A Language and Environment for Statistical  Computing.  Vienna, 
Austria, R Foundation for Statistical Computing.

Robin X., Turck N., Hainard A., et al. (2009). Bioinformatics for protein biomarker panel classification: 
What is needed to bring biomarker panels into in vitro diagnostics? Expert Review of Proteomics 6 (6), 
p. 675–689. PMID: 19929612. DOI: 10.1586/EPR.09.83.

Sing T., Sander O., Beerenwinkel N. and Lengauer T. (2005). ROCR: visualizing classifier performance in 
R. Bioinformatics 21 (20), p. 3940–3941. PMID: 16096348. DOI: 10.1093/bioinformatics/bti623.

Sonego P., Kocsor A. and Pongor S. (2008). ROC analysis: applications to the classification of biological  
sequences  and  3D  structures.  Briefings  in  Bioinformatics 9  (3),  p.  198–209.  PMID:  18192302.  DOI: 
10.1093/bib/bbm064.

Stephan C., Wesseling S., Schink T. and Jung K. (2003). Comparison of Eight Computer Programs for  
Receiver-Operating Characteristic Analysis. Clinical Chemistry 49 (3), p. 433–439. PMID: 12600955.

Streiner  D.  L.  and Cairney J.  (2007).  What's  under the  ROC? An introduction to  receiver  operating 
characteristics curves. Canadian Journal of Psychiatry. 52 (2), p. 121–128. PMID: 17375868.

Swets J. A. (1973). The Relative Operating Characteristic in Psychology.  Science 182 (4116), p. 990–1000. 
PMID: 17833780.

Turck  N.,  Vutskits  L.,  Sanchez-Pena  P.,  et  al. (2010).  A  multiparameter  panel  method  for  outcome 
prediction following aneurysmal subarachnoid hemorrhage. Intensive Care Medicine 36 (1), p. 107–115. 
PMID: 19760205. DOI: 10.1007/s00134-009-1641-y.

Venables W. N. and Ripley B. D. (2002). Modern Applied Statistics with S. New York, Springer.
Venkatraman E. S. and Begg C. B. (1996). A distribution-free procedure for comparing receiver operating  

characteristic  curves  from  a  paired  experiment.  Biometrika 83  (4),  p.  835–848.  DOI: 
10.1093/biomet/83.4.835.

Venkatraman E. S. (2000). A Permutation Test to Compare Receiver Operating Characteristic Curves.  
Biometrics 56 (4), p. 1134–1138. PMID: 11129471.

Wickham H. (2010). plyr: Tools for splitting, applying and combining data v. 1.4. http://CRAN.R-project.  -  
org/package=plyr.

Zou K. H., Hall W. J. and Shapiro D. E. (1997). Smooth non-parametric receiver operating characteristic 
(ROC)  curves  for  continuous  diagnostic  tests.  Statistics  in  Medicine 16  (19),  p.  2143–2156.  PMID: 
9330425. DOI: 10.1002/(SICI)1097-0258(19971015)16:19<2143::AID-SIM655>3.0.CO;2-3.

11

http://dx.doi.org/10.1002/(SICI)1097-0258(19971015)16:19%3C2143::AID-SIM655%3E3.0.CO;2-3
http://www.ncbi.nlm.nih.gov/pubmed/9330425
http://CRAN.R-project.org/package=plyr
http://CRAN.R-project.org/package=plyr
http://www.ncbi.nlm.nih.gov/sites/entrez/11129471
http://dx.doi.org/10.1093/biomet/83.4.835
http://dx.doi.org/10.1007/s00134-009-1641-y
http://www.ncbi.nlm.nih.gov/sites/entrez/19760205
http://www.ncbi.nlm.nih.gov/pubmed/17833780
http://www.ncbi.nlm.nih.gov/pubmed/17375868
http://www.ncbi.nlm.nih.gov/pubmed/12600955
http://dx.doi.org/10.1093/bib/bbm064
http://www.ncbi.nlm.nih.gov/sites/entrez/18192302
http://dx.doi.org/10.1093/bioinformatics/bti623
http://www.ncbi.nlm.nih.gov/sites/entrez/19929612
http://dx.doi.org/10.1586/EPR.09.83
http://www.ncbi.nlm.nih.gov/sites/entrez/19929612
http://www.ncbi.nlm.nih.gov/pubmed/20161343
http://CRAN.R-project.org/package=verification
http://CRAN.R-project.org/package=verification
http://dx.doi.org/10.1002/(SICI)1097-0258(19980515)17:9%3C1033::AID-SIM784%3E3.0.CO;2-Z
http://www.ncbi.nlm.nih.gov/pubmed/9612889


Robin et al. (2011) BMC Bioinformatics 12 p. 77

Errata
The R code given  in  the  “Case  study  on clinical  aSAH data  section”,  “CI”  sub-section on page 6 

contained a typo and could not be executed. R complained that argument "x" is missing, with no default. 
The code read:

plot(roc = roc(response = aSAH$outcome, predictor = aSAH$s100, percent=TRUE, 
ci=TRUE, of="se", sp=seq(0, 100, 5)), ci.type="shape")

The correct version is:

plot(x = roc(response = aSAH$outcome, predictor = aSAH$s100, percent=TRUE, 
ci=TRUE, of="se", sp=seq(0, 100, 5)), ci.type="shape")

Thanks to Joanne Thandrayen for spotting the error.
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Appendices

Assessment of the ROC comparison tests
To ensure  that our implementations of the three  statistical  tests  are  correct,  and to  evaluate  the 

correlation between them, we generated 600 p-values for each test under the null  hypothesis  (ROC 
curves are not different) by randomly switching the class labels of the 141 aSAH patients. For each null 
hypothesis,  DeLong, Venkatraman (with 10000 permutations)  and bootstrap (with 10,  100, 1000 and 
10000 replicates) tests were performed with a paired and unpaired setup.

We first assessed the existence of a systematic bias towards high or low p-values.  Appendix figure 1 
shows that  the  paired tests  do not deviate from uniformity  under the  null  hypothesis  (One-sample 
Kolmogorov-Smirnov test,  p  =  0.99 for  DeLong’s  test,  p  =  0.96 for  bootstrap  test  and p =  0.32  for  
Venkatraman’s  test).  However  paired  test  are  slightly  biased  towards  higher  p-values  (One-sample 
Kolmogorov-Smirnov test, p = 0.02 for DeLong’s test, p = 0.03 for bootstrap, p = 0.03 for Venkatraman).

Next,  we  tested  the  relationship  between  DeLong  and  bootstrap  tests.  Both  tests  determine 
differences in  AUCs and should  produce similar  results.  Indeed,  Appendix  figure  2 shows that with 
enough bootstrap replicates,  the  bootstrap test  converges to  the  values  of  DeLong’s  test.  Note  that 
DeLong’s  test  is  a  deterministic  test  and  thus  is  not  subject  to  variations  when repeated tests  are  
performed on the same data. Spearman's rank correlation  ρ is above 0.99 for all tests with 100 or more 
bootstrap replicates. For paired p-values lower than 0.1, the absolute difference between DeLong and 
bootstrap p-values obtained after 10000 replicates was lower than 0.005 in 95% of the tests. The 95%  
range  of  the  differences  increased  to  0.011  and  0.03  for  1000  and  100  replicates  respectively.  For 
unpaired p-values, the same trend was observed with 95% of the differences within 0.007, 0.013 and 0.03 
for  10000,  1000  and  100  replicates  respectively.  Therefore,  the  second  decimal  of  the  p-value  is 
measured accurately with 10000 bootstrap replicates, but not with 1000 or less replicates.

Finally, we looked at the association between Delong and Venkatraman’s tests. In contrast with the 
bootstrap test, Venkatraman’s test does not estimate the AUC but rather the shape of the ROC curve. 
Thus, we expect a lower correlation than with bootstrap, as two ROC curves with a different shape can 
have a similar or identical AUC value. Indeed,  Appendix figure 3 shows a much lower correlation than 
that observed in Appendix figure 2 with bootstrap. Note that the figure is asymmetric: similar AUCs may 
have different shapes, but it is less likely that similar shapes would have different AUCs.
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Appendix figure 1: Histograms of the frequency of 600 test p-values under the null hypothesis (ROC curves are not dif­
ferent). A: DeLong’s paired test, B: DeLong’s unpaired test, C: bootstrap paired test (with 10000 replicates), D: bootstrap 
unpaired test (with 10000 replicates) and E: Venkatraman’s test (with 10000 permutations).
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Appendix figure 2: Correlations between DeLong and bootstrap paired tests. X axis: DeLong’s test; Y-axis: bootstrap test 
with number of bootstrap replicates. A: 10, B: 100, C: 1000 and D: 10000.
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Appendix figure  3: Correlation between DeLong and Venkatraman’s test. X axis: DeLong’s test; Y-axis: Venkatraman’s 
test with 10000 permutations. 
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Appendix figure 4: Binormal smoothing, Binormal smoothing with pcvsuite (green, solid) and pROC (black, dashed).
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